Routine phasing of coiled-coil protein crystal structures with AMPLE
نویسندگان
چکیده
Coiled-coil protein folds are among the most abundant in nature. These folds consist of long wound α-helices and are architecturally simple, but paradoxically their crystallographic structures are notoriously difficult to solve with molecular-replacement techniques. The program AMPLE can solve crystal structures by molecular replacement using ab initio search models in the absence of an existent homologous protein structure. AMPLE has been benchmarked on a large and diverse test set of coiled-coil crystal structures and has been found to solve 80% of all cases. Successes included structures with chain lengths of up to 253 residues and resolutions down to 2.9 Å, considerably extending the limits on size and resolution that are typically tractable by ab initio methodologies. The structures of two macromolecular complexes, one including DNA, were also successfully solved using their coiled-coil components. It is demonstrated that both the ab initio modelling and the use of ensemble search models contribute to the success of AMPLE by comparison with phasing attempts using single structures or ideal polyalanine helices. These successes suggest that molecular replacement with AMPLE should be the method of choice for the crystallo-graphic elucidation of a coiled-coil structure. Furthermore, AMPLE may be able to exploit the presence of a coiled coil in a complex to provide a convenient route for phasing.
منابع مشابه
Solving coiled-coil protein structures
The successful approach to solving crystal structures of coiled-coil proteins with the program AMPLE is discussed.
متن کاملPredicting coiled-coil regions in proteins.
The past several years have seen significant advances in our ability to recognize coiled coils from protein sequences and model their structures. New methods include a detection program based on pairwise residue correlations, a program that distinguishes two-stranded from three-stranded coiled coils and a routine for modelling the coordinates of the core residues in coiled coils. Several widely...
متن کاملAutomated protein crystal structure determination using ELVES.
Efficient determination of protein crystal structures requires automated x-ray data analysis. Here, we describe the expert system ELVES and its use to determine automatically the structure of a 12-kDa protein. Multiwavelength anomalous diffraction analysis of a selenomethionyl derivative was used to image the Asn-16-Ala variant of the GCN4 leucine zipper. In contrast to the parallel, dimeric co...
متن کاملStructural test of the parameterized-backbone method for protein design.
Designing new protein folds requires a method for simultaneously optimizing the conformation of the backbone and the side-chains. One approach to this problem is the use of a parameterized backbone, which allows the systematic exploration of families of structures. We report the crystal structure of RH3, a right-handed, three-helix coiled coil that was designed using a parameterized backbone an...
متن کاملCrystal structure of the SMC head domain: an ABC ATPase with 900 residues antiparallel coiled-coil inserted.
SMC (structural maintenance of chromosomes) proteins are large coiled-coil proteins involved in chromosome condensation, sister chromatid cohesion, and DNA double-strand break processing. They share a conserved five-domain architecture with three globular domains separated by two long coiled-coil segments. The coiled-coil segments are antiparallel, bringing the N and C-terminal globular domains...
متن کامل